Syntheses and crystal structures of azafulleroid and aziridinofullerene bearing silyl or germyl benzene

Houjin Hachiya, Toshiyuki Kakuta, Makoto Takami, Yoshio Kabe*
Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka 259-1293, Japan

A R T I CLE INFO

Article history:

Received 6 October 2008
Received in revised form 13 November 2008
Accepted 18 November 2008
Available online 30 November 2008

Keywords:

Fullerene
Silicon
Germanium
X-ray structure
POAV analysis

Abstract

Addition of silyl and germylmethyl azides (1) to fullerene C_{60} at $50^{\circ} \mathrm{C}$ through [2+3] cycloaddition led to the formation of the triazoline adducts (2). Subsequently, heating 2 at $100^{\circ} \mathrm{C}$ in the solid state, caused N_{2} extrusion producing two different isomers, [5,6]-azafulleroid (3) and [6,6]-aziridinofullerene (4). The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ had an absence of resonances in the aliphatic region for the fullerene C_{60} cage, showing a fulleroid with C_{S} symmetry. In contrast, 4 exhibited one sp^{3} resonance in the aliphatic region for the fullerene C_{60} cage, indicative of an aziridinofullerene with $C_{2 v}$ symmetry. However, MALDI-TOF mass characterization was hampered because ion peaks corresponding to the bis-adduct are detected in positive ion mode measurements, whereas the ion peaks $\left[\mathrm{M}-\mathrm{N}_{2}\right]^{-}$for $\mathbf{2 a}$ as well as $[\mathrm{M}]^{-}$for $\mathbf{3 a}$ and $\mathbf{4 a}$ are observed in negative ion measurements. In an effort to obtain X-ray data, silyl and germylphenyl groups were introduced to form intermolecular complexes with fullerene C_{60}. The X-ray structures of $\mathbf{3 c}$ and $\mathbf{3 d}$ revealed a strong enhancement of homoconjugation in the bridged annulene moiety based on POAV analysis. The X-ray structures of $\mathbf{3 c}, \mathbf{d}$ and $\mathbf{4 c}$ were confirmed with the detection of silyl and germylphenyl- C_{60} interactions, similar to dimethoxyphenyl- C_{60} interactions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Among the various fullerenes and fullerene derivatives, only a limited number of X-ray structures have been reported. Crystals of fullerenes and many chemically modified fullerenes suitable for X-ray diffraction studies have been difficult to obtain due to poor crystal quality and high symmetry. In order to synthesize acceptable crystalline compounds, cocrystallization with porphyrin, benzene and other such compounds has been important [1]. Another method involves, appending a bulky metal complex to the fullerene or inclusion into bowl-shaped molecules such as cyclodextrin, calixarene and cyclotriveratrylene which lowers the symmetry and can also produce ordered structures [2]. Of note is the fact that some of the methoxybenzenes and benzylether fullerene derivatives showed interesting intermolecular donor-acceptor interactions, that is, close contact between the methoxybenzene or benzylether and a neighboring C_{60}, thus forming a chain of interacting fullerene cages in the crystal. To further evaluate this, the structures of cycloadducts, methanofullerenes and endohedral methallofullerenes were successfully characterized [3]. It was found that the silyl and germyl derivatives of fullerenes formed intermolecular complexes, enabling the structures of silyl- and ger-mylphenyl-substituted azafulleroid and aziridinofullerene to be characterized by X-ray analysis [4].

[^0]
2. Results and discussion

A mixture of fullerene C_{60} and trimethylsilylmethylazide (1a) in o-dichlorobenzene (ODCB) was heated at $50^{\circ} \mathrm{C}$ for 6 h to give a dark brown solid triazoline adduct (2a) in 28% yield, as shown in Scheme 1 . The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a}$ exhibited the presence of $2 \mathrm{sp}^{3}$ resonances for the fullerene C_{60} cage, indicative of a methanofullerene, i.e., the triazoline derivative with C_{S} symmetry. Subsequently heating 2a at $100^{\circ} \mathrm{C}$ for 33 h in the solid state produced a mixture of the corresponding [5,6]-azafulleroid (3a) and [6,6]aziridinofullerene (4a). The isomers were separated by column chromatography (silica gel: CS_{2}) to give dark brown solid 3a in 19% yield, and $4 \mathbf{a}$ in 1% yield, with 33% of the C_{60} recovered. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$ had an absence of resonances in the aliphatic region for the C_{60} cage, typical of a fulleroid with C_{S} symmetry. In contrast, 4a exhibited one sp^{3} resonance in the aliphatic region for the C_{60} cage, indicative of a methanofullerene with $\mathrm{C}_{2 \mathrm{~V}}$ symmetry (see Fig. 1). Moreover, heating of either 2a or 3a at $170^{\circ} \mathrm{C}$ in ODCB affords $\mathbf{4 a}$.

These chemical correlations and the symmetries of the products based on the ${ }^{13} \mathrm{C}$ NMR data are consistent with the reported reaction: [2+3] addition of azide followed by loss of N_{2} producing two different isomers, the azafulleroid and aziridinofullerene [5]. However, MALDI-TOF mass characterization is hampered because the ion peaks corresponding to the bis-adduct are detected in positive ion mode measurements, whereas the ion peaks $\left[\mathrm{M}-\mathrm{N}_{2}\right]^{-}$ for $\mathbf{2 a}$ as well as $[\mathrm{M}]^{-}$for $\mathbf{3 a}$ and $\mathbf{4 a}$ are observed in negative ion

2a-d

Scheme 1. Syntheses of azafulleroid 3 and aziridinofullerene 4.
measurement, as shown in Fig. 2. In an effort to obtain X-ray data, silyl and germylphenyl groups were introduced, forming intermolecular complexes with C_{60}, similar to methoxybenzene derivatives. Instead of trimethylsilylmethylazide (1a), dimethylph enylsilylmethylazide (1b), triphenylsilylmethylazide (1c) and triphenylgermylmethylazide (1d) were employed, affording three adducts, 2b-d (36\%, 31% and 26% yield), $\mathbf{3 b}-\mathbf{d}$ ($22 \%, 41 \%$ and 41% yield) and $\mathbf{4 b}$-d ($4 \%, 3 \%$ and 9% yield), respectively, with some C_{60} recovered ($42 \%, 27 \%$ and 33% yield). Yields of $\mathbf{4 b}-\mathbf{d}$ increased upon heating a solution of $\mathbf{2 b}-\mathbf{d}$ or $\mathbf{3 b}-\mathbf{d}$ in ODCB at $170^{\circ} \mathrm{C}$ for 24 h . This thermal dependence of yield shows that the aziridinofullerenes $4 \mathbf{a}-\mathbf{d}$ are more stable than the corresponding azafulleroids $\mathbf{3 a - d}$. To further clarify the thermal isomerization, the relative stabilities of $\mathbf{3 a - d}$ and $4 \mathbf{a}-\mathbf{d}$ were calculated at the B3LYP/6-31G** level (see Scheme 2 and Table 1). The theoretical calculations were in good agreement with the experimental results.

Finally, proving the hypothesis valid, 3c,d and 4c were isolated as black prismatic single crystals by diffusion crystallization from toluene $/ \mathrm{CS}_{2}$ or benzene $/ \mathrm{CS}_{2}$. The crystal structures of $\mathbf{3 c}, \mathbf{3 d}$ and 4c with partial atomic numbering are shown in Fig. 3. These compounds crystallize in space group $P \overline{1}$ with one $\mathrm{Ph}_{3} \mathrm{SiCH}_{2} \mathrm{NC}_{60}$ or $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{NC}_{60}$ molecule and one solvent molecule (toluene or benzene) in the unit cell. The C1-C5 addition regiochemistry for 3c and $3 \mathbf{d}$ is $[5,6$] as seen in the crystal structures shown in Figs. 3 and 4. The C1-C5 distances (2.134 and $2.141 \AA$) for 3c and 3d are clearly non-bonded. This distance is of the same order of magnitude as in $\mathrm{C}_{70} \mathrm{CCl}_{2}$ fulleroid (2.135 (1) \AA) and $\mathrm{C}_{60} \mathrm{C}_{3} \mathrm{NPyPh}_{2}$ bisfulleroid (2.279 (4) \AA) [6]. For 3c and 3d, the C5-C6 (1.380 (3) and 1.384 (3) \AA), C7-C8 (1.401 (3) and 1.406 (3) \AA) and C9-C1 (1.386 (3) and 1.391 (3) \AA) bonds possess double bond character, whereas the others are single bonds (1.451 (3)-1.486 (3) and 1.444 (3)-1.483 (3) \AA, respectively). Thus, 3c and 3d have an open-bridged annulene structure as shown in Scheme 1. The fulleroid preserves 60π electrons, similar to C_{60}, which depends on the presence of a homoconjugate interaction in the bridged annulene moiety. The pyramidalization angles based on X-ray geometry for 3c and 3d are 7.1° and $7.3^{\circ}(\mathrm{C} 1, \mathrm{C} 5), 9.5^{\circ}$ and $9.6^{\circ}(\mathrm{C} 2, \mathrm{C} 4), 10.5^{\circ}$ and $10.6^{\circ}(\mathrm{C} 3), 10.0^{\circ}$ and $9.9^{\circ}(\mathrm{C}, \mathrm{C} 9)$, and 11.0° and $11.0^{\circ}(\mathrm{C} 7$, C8), which are similar to the reported values for $\mathrm{C}_{60} \mathrm{NH}\left(8.1^{\circ}\right.$, $10.0^{\circ}, 10.4^{\circ}, 10.2^{\circ}$ and 10.9°, respectively) (see Fig. 3 and Table 2) [7c]. The pyramidalization angle for normal fullerene C_{60} is 11.6°, and therefore, the values for $\mathbf{3 c}$ and $\mathbf{3 d}$ indicate that the azafulleroid preserves the structure of fullerene C_{60}. The $3 \mathrm{D}-\mathrm{HMO}$ resonance integral $\beta_{1.5}$ equals 0.39β and 0.38β for $\mathbf{3 c}$ and $\mathbf{3 d}$, respectively (C1 and C5 averaged for X-ray crystal data), which ex-
ceeds the reported value of 0.32β for $\mathrm{C}_{60} \mathrm{NH}$, evidence of a strong enhancement of homoconjugation in the bridged annulene moiety. The C1-C6 addition geometry and distance (1.590 (4) A) for 4c suggests the presence of a $[6,6]$ transannular bond between C 1 and C 6 , and the aza-cyclopropane (aziridine) structure shown in Fig. 3. The distance is of the same order of magnitude as in $\mathrm{C}_{60} \mathrm{CPh}(\mathrm{Ph}-$ $\left.(\mathrm{OMe})_{2}\right)$ methanofullerene $\left(1.614\right.$ (7) \AA) and $\mathrm{C}_{60} \mathrm{C}(\mathrm{Ph}-\mathrm{OMe})_{2}$ methanofullerene ($1.625 \AA$). B3LYP/6-31G** calculations were also in good agreement with the transannular bond length: $2.157 \AA$ for 3c, $2.160 \AA$ for $\mathbf{3 d}$, and $1.592 \AA$ for $\mathbf{4 c}$.

Inspection of the crystal packing of 3c • toluene shown in Fig. 5 (top), shows that one of silylphenyl rings is positioned close to a neighboring fullerene molecule by face-to-face $(\pi-\pi)$ interaction. The shortest distance between one silylphenyl ring and the C_{60} moiety is in the $3.384 \AA$ range. These interactions continue on to the next molecule, resulting in an infinite chain. A second type of interaction places a silylphenyl hydrogen atom close to the edge-

Fig. 1. ${ }^{13} \mathrm{C}$ NMR spectra in a CS_{2} : $\mathrm{CDCl}_{3}=3: 2$ solution; (a) 2a, (b) 3a and (c) 4a.

Fig. 2. MALDI-TOF mass spectra of 2a in a 1,1,4,4-tetraphenyl-1,3-butadiene matrix; (a) positive ion reflectron mode and (b) negative ion reflectron mode.

Scheme 2. Isomerization of azafulleroid 3 to aziridinofullerene 4.

Table 1
Relative energies ($\mathrm{kcal} \mathrm{mol}^{-\mathbf{1}}$) of 3a-d and 4a-d calculated at the B3LYP/ 6-31G** basis set.

	Azafulleroid (3)	Aziridinofullerene (4)
$\mathbf{a}: \mathrm{E}=\mathrm{Si}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$	+0.69	0.00
b-1: $\mathrm{E}=\mathrm{Si}, \mathrm{R}_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Me}$	+0.78	0.00
b-2: $\mathrm{E}=\mathrm{Si}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Ph}, \mathrm{R}_{3}=\mathrm{Me}$	+0.95	0.00
b-3: $\mathrm{E}=\mathrm{Si}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Ph}$	+0.87	0.00
c: $\mathrm{E}=\mathrm{Si}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Ph}$	+1.23	0.00
d: $\mathrm{E}=\mathrm{Ge}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{Ph}$	+0.43	0.00

to-face on another C_{60} in the next infinite chain. These edge-to-face (CH / π) silylpheny- C_{60} interactions are in the 2.733-2.892 Å range. Although toluene solvent molecules are omitted for clarity, toluene also contacts with C_{60} in the next infinite chain, face-to-face, in the 3.290-3.394 Å range.

In order to insure that the silylphenyl group alone is capable of interacting with neighboring fullerenes, single crystal growth of $\mathbf{3 c}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$ solvent resulting in crystallization without solvent inclusion was attempted, as shown in Fig. 5 (bottom). The crystal packing of 3c shows no face-to-face contacts between the silylphenyl groups and C_{60}, but has three edge-to-face silylphe-nyl- C_{60} interactions in the 2.632-2.855 Å range. The crystal packing of $\mathbf{4 c}$-benzene and $\mathbf{3 d}$-toluene showed additional interactions, specifically four (4c) and two (3d) edge-to-face interactions between silylphenyl groups, and two (4c) and four (3d) edge-to-face silylphenyl group- C_{60} interactions in the $2.845-$ $2.854 \AA$ and $2.780-2.862 \AA$ range, respectively. Thus, interactions occur with and without participation of solvent, a likely explanation for the ordered structures of these crystals.

In conclusion, the X-ray structures of azafulleroid 3c, 3d and aziridinofullerene $\mathbf{4 c}$ have been obtained with the help of effective silyl and germylphenyl- C_{60} interactions. These results suggest that the introduction of silyl and germylphenyl groups can be useful in obtaining crystals of chemically modified fullerenes [12].

3. Experimental

3.1. General data

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECP500 operating at 500 or 125 MHz , respectively. IR spectra were recorded on a JASCO FT/IR-4100. MALDI-TOF mass spectra were recorded on a Shimadzu AXIMA-CFR. EI mass spectra were recorded on a JEOL JMS-AX505H. UV spectra were recorded on a JASCO V-550. GPLC (gel permeation liquid chromatography) was performed on an LC-908 (Japanese Analytical Industry, Co., Ltd.)

Fig. 3. X-ray crystal structures of $\mathbf{3 c} \cdot$ toluene (left), $\mathbf{3 d} \cdot$ toluene (middle) and $\mathbf{4 c} \cdot$ toluene (right).

Fig. 4. The partial atomic numbering of azafulleroid 3 ([5,6]open, left) and aziridinofullerene 4 ([6,6]close, right).

Table 2
Pyramidalization angles $\left({ }^{\circ}\right)$ of $\mathbf{3 c}$ and $\mathbf{3 d}$ based on X-ray and calculated geometries.

	C1, C5	C2, C4	C3	C6, C9	C7, C8
$\mathbf{3 c}^{\mathrm{a}}$	7.1	9.5	10.5	10.0	11.0
$\mathbf{3 c}^{\mathrm{b}}$	7.6	9.6	10.5	10.0	10.9
$\mathbf{3 d}^{\mathrm{a}}$	7.3	9.6	10.6	9.9	11.0
$\mathbf{3 d}^{\mathrm{b}}$	7.6	9.6	10.5	9.9	10.9
$\mathrm{C}_{60} \mathrm{NH}^{\mathrm{c}}$	8.1	10.0	10.4	10.2	10.9

${ }^{\text {a }}$ Geometry of X-ray crystal data.
${ }^{\text {b }}$ Geometry optimized using B3LYP/6-31G** basis set.
${ }^{\text {c }}$ See Ref. [7c].
equipped with JAIGEL 1H and 2H columns (eluent: toluene). Melting points were determined on a Yanaco MP-S3.

3.2. Azide compounds 1b-d

3.2.1. Typical procedure: dimethylphenylsilylmethylazide (1b)

A mixture of $\mathrm{Me}_{2} \mathrm{PhSiCH}_{2} \mathrm{Cl}(5.18 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(6.23 \mathrm{mmol}$, 1.2 equiv.) in DMPU (15 ml) was stirred heating at $80^{\circ} \mathrm{C}$ for 14 h under argon atmosphere. The reaction mixture was washed with water, extracted with toluene and hexane, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the crude product was purified by GPLC (eluent: toluene) to afford $\mathrm{Me}_{2} \mathrm{PhSiCH}_{2} \mathrm{~N}_{3}$.

Fig. 5. Crystal packing of $\mathbf{3 c}$ - toluene (top) and 3c (bottom), with close contacts among silylphenyl groups and neighboring fullerenes shown in dashed lines.

Yield: 76% (yellow oil). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.40(6 \mathrm{H}, \mathrm{s})$, $2.98(2 \mathrm{H}, \mathrm{s}),, 7.38-7.54(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.14$, $41.43,128.04,129.73,133.64,136.07$; IR (neat) $v=2083 \mathrm{~cm}^{-1}$; MS (EI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Si}\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{~N}_{3}\right]^{+}\right), 135$, found, 135.

3.2.2. Triphenylsilylmethylazide (1c)

Yield: 76% (colorless crystals). m.p. $99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.61(2 \mathrm{H}, \mathrm{s}), 7.39-7.57(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 39.59,128.15,130.21,132.35,135.70$; IR (KBr) $v=2098 \mathrm{~cm}^{-1}$; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right), 316$, found, 316.

3.2.3. Triphenylgermylmethylazide (1d)

Yield: 63% (colorless crystals). m.p. $92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.68(2 \mathrm{H}, \mathrm{s}), 7.40-7.52(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 39.78,128.49,129.58,134.90,135.37$; IR (KBr) $v=2089 \mathrm{~cm}^{-1}$; MS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Ge}\left(\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{~N}_{3}\right]^{+}\right), 305$, found, 305.

3.3. Triazoline adducts 2a-d

3.3.1. Ttypical procedure: [6,6]-(1-N-trimethylsilylmethyl-triazoline)C_{60} (2a)

A mixture of fullerene C_{60} (0.500 mmol) and (1a) (0.501 mmol , 1.0 equiv.) in ODCB (36 ml) was stirred heating at $50^{\circ} \mathrm{C}$ for 6 h under argon atmosphere. The solvent was removed under reduced pressure, and the crude product was purified by GPLC (eluted toluene) to afford $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{~N}_{3} \mathrm{C}_{60}(\mathbf{2 a})$ as a black solid.

Yield: 28% (black solid). m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 0.50(9 \mathrm{H}, \mathrm{s}), 3.62(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta-1.43,38.59,83.17,103.99,135.64,136.44$, 139.96, 140.40, 140.43, 141.59, 141.78, 141.92, 142.19, 142.25, 142.39, 142.53, 142.68, 142.80, 143.61, 144.13, 144.75, 144.78, 144.85, 145.00, 145.10, 145.42, 145.58, 145.78, 145.87, 145.93, 147.06, 147.25; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{64} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Si}$ ([M-N $\left.\mathrm{N}_{2}-\mathrm{H}\right]^{-}$), 821, found, 821; UV-Vis (toluene) $\lambda_{\text {max }} / \mathrm{nm}(\varepsilon) 427$ (2900).

3.3.2. [6,6]-(1-N-dimethylphenylsilylmethyl-triazoline)- C_{60} (2b)

Yield: 36% (black solid). m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 0.82(6 \mathrm{H}, \mathrm{s}), 3.82(2 \mathrm{H}, \mathrm{s}), 7.41-7.44(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta-2.87,38.14,83.09$, 104.03, 127.96, 129.56, 130.28, 132.60, 133.75, 135.71, 136.24, $136.47,139.98,140.25,140.41,141.62,141.80,141.92,141.94$, $142.20,142.25,142.40,142.56,142.70,143.63,144.13,144.71$, 144.81, 144.88, 145.11, 145.45, 145.60, 145.61, 145.77, 145.81, 145.90, 145.94, 147.11, 147.28; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{69} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Si}\left(\left[\mathrm{M}-\mathrm{N}_{2}-\mathrm{H}\right]^{-}\right)$, 883, found, 883; UV-Vis (toluene) $\lambda_{\text {max }} / \mathrm{nm}$ (ε) 427 (3200).

3.3.3. [6,6]-(1-N-triphenylsilylmethyl-triazoline)- C_{60} (2c)

Yield: 31% (black solid). m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 4.44(2 \mathrm{H}, \mathrm{s}), 7.45-7.78(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \quad \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \quad \delta \quad 35.89,82.85,104.33,128.00$, 132.60, 135.58, 135.73, 136.50, 139.98, 140.02, 140.35, 141.60, $141.75,141.88,142.16,142.23,142.35,142.50,142.65,143.57$, 144.10, 144.63, 144.75, 144.83, 145.04, 145.37, 145.55, 145.57, 145.68, 145.79, 145.84, 145.90, 147.04, 147.23; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{Si}\left(\left[\mathrm{M}-\mathrm{N}_{2}-\mathrm{H}\right]^{-}\right)$, 1007, found, 1007; UV-Vis (toluene) $\lambda_{\max } / \mathrm{nm}(\varepsilon) 427$ (3300).

3.3.4. [6,6]-(1-N-triphenylgermylmethyl-triazoline)- C_{60} (2d)

Yield: 26% (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 4.47(2 \mathrm{H}, \mathrm{s}), 7.39-7.66(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 36.28,82.83,104.78,128.41,129.38$, $134.95,134.97,135.72,136.59,140.03,140.43,141.68,141.83$, 141.91, 141.95, 142.23, 142.28, 142.43, 142.58, 142.72, 143.65, 144.17,144.66, 144.74, 144.84, 144.91, 145.12, 145.45, 145.63, $145.65,145.72,145.85,145.94,145.98,147.14,147.32$; MS (MAL-DI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Ge}\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{S}\right]^{-}\right)$, 1085, found, 1085.

3.4. Azafulleroid 3a-d and aziridinofullerene 4a-d

3.4.1. Typical procedure: [5,6]-(1-N-trimethylsilylmethyl-azafulleroid)- C_{60} (3a) and [6,6]-(1-N-trimethylsilylmethyl-fulleroaziridine)- C_{60} (4a)

Solid $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{~N}_{3} \mathrm{C}_{60}$ (2a) $(0.019 \mathrm{mmol})$ was heated at $100^{\circ} \mathrm{C}$ for 33 h under argon atmosphere. The crude product was purified
by column chromatography (eluent: CS_{2}) to afford the azafulleroid $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{NC}_{60}$ (3a) as the major product, and the aziridinofullerene $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{NC}_{60}$ (4a) as the minor. Aziridinofullerene Me_{3} $\mathrm{SiCH}_{2} \mathrm{NC}_{60}$ (4a) (0.019 mmol) was also obtained by heating a solution of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{~N}_{3} \mathrm{C}_{60}(\mathbf{2 a})$ in ODCB $(2 \mathrm{ml})$ at $170^{\circ} \mathrm{C}$ for 24 h under argon atmosphere. The crude product was purified by column chromatography (eluent: CS_{2}) or GPLC (eluent: toluene) to afford $\mathbf{4 a}$ as the major product.

3a: yield: 19% (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 0.38(9 \mathrm{H}, \mathrm{s}), 3.44(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta-1.63,43.00,133.47,135.28,135.91,136.76$, 136.98, 137.55, 137.79, 138.24, 138.94, 140.42, 140.98, 142.27, 142.47, 142.54, 142.64, 142.83, 143.12, 143.37, 143.55, 143.88, 143.93, 144.01, 144.07, 144.19, 144.23, 144.50, 144.79, 147.59, 149.00; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{64} \mathrm{H}_{10} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$, 821, found, 821.

4a: yield: 17\%: when obtained as the major product (black solid). m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 0.49$ ($9 \mathrm{H}, \mathrm{s}$), $3.25(2 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) δ $-1.91,41.91,86.69,140.53,141.87,142.09,142.61,142.80$, 143.54, 144.22, 144.27, 144.33, 144.84; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{64} \mathrm{H}_{10} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right), 821$, found, 821 .

3.4.2. [5,6]-(1-N-dimethylphenylsilylmethyl-azafulleroid)- C_{60} (3b)

 and [6,6]-(1-N-dimethylphenylsilylmethyl-fulleroaziridine)- C_{60} (4b)3b: yield: 22% (black solid). m.p. $>300^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 0.66(6 \mathrm{H}, \mathrm{s}), 3.62(2 \mathrm{H}, \mathrm{s}), 7.36-7.76(5 \mathrm{H}, \mathrm{m}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta-3.26,42.62,127.97$, 129.48, 133.50, 133.84, 134.15, 135.31, 135.96, 136.91, 136.97, 137.56, 137.80, 138.26, 138.95, 140.46, 141.02, 142.29, 142.50, 142.57, 142.67, 142.82, 142.88, 142.96, 143.15, 143.31, 143.39, 143.56, 143.91, 144.01, 144.09, 144.22, 144.52, 144.81, 147.60, 148.72; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{69} \mathrm{H}_{12} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$, 883, found, 883.

4b: yield: 19\%: when obtained as the major product (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 0.76$ $(6 \mathrm{H}, \mathrm{s}), 3.42(2 \mathrm{H}, \mathrm{s}), 7.36-7.77(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta-3.62,41.49,86.41,127.36,127.70,129.55$, 129.83, 134.11, 134.76, 136.18, 140.33, 141.87, 142.05, 142.58, 142.78, 143.54, 144.24, 144.27, 144.29, 144.86; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{69} \mathrm{H}_{12} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right), 883$, found, 883.

3.4.3. [5,6]-(1-N-triphenylsilylmethyl-azafulleroid)- C_{60} (3c) and [6,6]-

 (1-N-triphenylsilylmethyl-fulleroaziridine)- C_{60} (4c)3c: yield: 41% (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 4.23(2 \mathrm{H}, \mathrm{s}), 7.41-7.78(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \quad \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 41.31,125.17,128.06,129.97$, 132.80, 133.60, 135.41, 136.06, 136.80, 137.28, 137.50, 137.86, $138.23,138.98,140.49,141.03,142.32,142.50,142.54,142.64$, $142.89,142.95,143.14,143.33,143.37,143.52,143.80,143.85$, 143.99, 144.04, 144.14, 144.17, 144.49, 144.75, 147.55, 148.32; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{16} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right), 1007$, found, 1007.

4c: yield: 33% : when obtained as the major product (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 4.03$ $(2 \mathrm{H}, \mathrm{s}), 7.40-7.85(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 39.72,86.15,128.12,130.00,132.62,136.17,140.12,141.87$, 142.04, 142.53, 142.78, 143.53, 144.26, 144.87; MS (MALDI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{16} \mathrm{NSi}\left([\mathrm{M}-\mathrm{H}]^{-}\right), 1007$, found, 1007; UV-Vis (toluene) $\lambda_{\max } / \mathrm{nm}(\varepsilon) 428$ (2600), 498 (1800).
3.4.4. [5,6]-(1-N-triphenylgermylmethyl-azafulleroid)- C_{60} (3d) and [6,6]-(1-N-triphenylgermylmethyl-fulleroaziridine)- C_{60} (4d)

3d: yield: 41% (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 4.35(2 \mathrm{H}, \mathrm{s}), 7.42-7.78(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \quad \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2\right) \delta 41.91,128.35,129.29,134.81$,
135.11, 135.92, 136.75, 137.05, 137.34, 138.17, 138.94, 140.11, 140.43, 140.96, 142.32, 142.43, 142.49, 142.61, 142.76, 142.84, 142.90, 143.09, 143.33, 143.47, 143.77, 143.80, 143.94, 144.01, 144.13, 144.26, 144.42, 144.71, 144.85, 147.50, 148.21; MS (MAL-DI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{17} \mathrm{NGe}\left([\mathrm{M}+\mathrm{S}]^{-}\right), 1085$, found, 1085.

4d: yield: 9\%: when obtained as the major product (black solid). m.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 4.17(2 \mathrm{H}, \mathrm{s})$, 7.40-7.78 ($15 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CS}_{2}: \mathrm{CDCl}_{3}=3: 2$) $\delta 40.78$, 86.36, 128.47, 129.41, 134.88, 135.36, 140.15, 141.89, 142.03, 142.57, 142.80, 142.90, 143.57, 144.30, 144.32, 144.90; MS (MAL-DI-TOF mass) calcd. for $\mathrm{C}_{79} \mathrm{H}_{17} \mathrm{NGe}\left([\mathrm{M}+\mathrm{S}]^{-}\right), 1085$, found, 1085.

3.5. X-ray crystallography

Single crystals of 3c, 3d and $\mathbf{4 c}$ suitable for X-ray diffraction study were mounted on a Rigaku RAXIS RAPID S Imaging Plate diffractometer with Mo $\mathrm{K} \alpha$ (graphite monochromated, $\lambda=0.71073$) radiation. Crystal data and statistics are summarized in Tables 3 and 4. The structures were solved by direct methods (shelxs-97 [8] and sir 2004 [9]) using the WinGX v1.70.01 interface [10]. The non-hydrogen atoms were refined anisotropically by full-matrix least-square methods (shelxl-97) [8]. The hydrogen atoms were placed at calculated positions and kept fixed. In subsequent refinement, the function $\sum \omega\left(F_{o}^{2}-F_{c}^{2}\right)^{2}$ was minimized, where $\left|F_{o}\right|$ and $\left|F_{\mathrm{c}}\right|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R_{1}=\Sigma\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|\right.$ and $w R_{2}=\left[\sum \omega\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum\left(\omega F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}$.

3.5.1. Crystallographic data for $\mathbf{3 c} \cdot$ toluene and $\mathbf{3 c}$

See Table 3.

Table 3
Crystal data and data collection parameters.

	3c toluene	3c
Empirical formula	$\mathrm{C}_{86} \mathrm{H}_{25} \mathrm{NSi}$	$\mathrm{C}_{79} \mathrm{H}_{17} \mathrm{NSi}$
Formula weight	1100.16	1008.03
Temperature (K)	150 (2)	150 (2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$
$a(\AA)$	9.9609 (15)	10.140 (6)
b (A)	13.423 (3)	13.348 (7)
$c(\AA)$	18.859 (4)	16.682(11)
$\alpha\left({ }^{\circ}\right)$	101.006 (7)	76.47 (2)
$\beta\left({ }^{\circ}\right)$	96.025 (7)	86.077 (17)
$\gamma\left({ }^{\circ}\right)$	106.643 (9)	74.259 (19)
Volume (${ }^{\text {® }}$)	2337.1 (8)	2113 (2)
Z	2	2
Density (calculated) (g/cm ${ }^{3}$)	1.563	1.584
Absorption coefficient (mm^{-1})	0.114	0.118
$F(000)$	1124	1024
Crystal size (mm)	$0.50 \times 0.50 \times 0.20$	$0.75 \times 0.38 \times 0.30$
Theta range for data collection ${ }^{\circ}$)	3.02-27.48	3.08-27.47
Index ranges	$-12 \leqslant h \leqslant 11$	$-12 \leqslant h \leqslant 13$
	$-17 \leqslant k \leqslant 17$	$-16 \leqslant k \leqslant 17$
	$-23 \leqslant l \leqslant 24$	-21 $\leqslant l \leqslant 21$
Reflections collected	22685	22379
Independent reflections [$R_{\text {(int) }}$]	10568 (0.0356)	8823 (0.0911)
Completeness to theta (\%)	98.5	91.2
Absorption correction	None	None
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data/restraints/parameters	10568/0/893	8823/0/730
Goodness-of-fit (GOF) indicator	1.035	1.048
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0535 \\ & w R_{2}=0.1224 \end{aligned}$	$\begin{aligned} & R_{1}=0.1258, \\ & w R_{2}=0.3092 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0711 \\ & w R_{2}=0.1310 \end{aligned}$	$\begin{aligned} & R_{1}=0.2338, \\ & w R_{2}=0.3740 \end{aligned}$
Largest difference peak and hole ($\mathrm{e} \AA^{-3}$)	0.402 and -0.451	0.672 and -0.325

Table 4
Crystal data and data collection parameters.

	3d toluene	4c benzene
Empirical formula	$\mathrm{C}_{86} \mathrm{H}_{25} \mathrm{NGe}$	$\mathrm{C}_{85} \mathrm{H}_{23} \mathrm{NSi}$
Formula weight	1144.66	1086.13
Temperature (K)	150 (2)	150 (2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$
$a(\AA)$	9.993 (2)	10.040 (5)
b (\AA)	13.433(2)	13.292 (9)
$c(\AA)$	18.848(4)	18.748 (9)
$\alpha\left({ }^{\circ}\right)$	101.149 (11)	100.53 (19)
$\beta\left({ }^{\circ}\right)$	96.146 (8)	97.75 (24)
$\gamma\left({ }^{\circ}\right)$	106.582 (8)	106.11 (18)
Volume (\AA^{3})	2343.6 (8)	2317.1 (23)
Z	2	2
Density (calculated) (g/cm ${ }^{3}$)	1.622	1.557
Absorption coefficient (mm^{-1})	0.717	0.114
$F(000)$	1160	1108
Crystal size (mm)	$0.75 \times 0.38 \times 0.30$	$0.75 \times 0.18 \times 0.10$
Theta range for data collection ${ }^{\circ}$)	3.01-27.48	3.00-27.48
Index ranges	$-12 \leqslant h \leqslant 10$	$-13 \leqslant h \leqslant 12$
	$-17 \leqslant k \leqslant 17$	$-17 \leqslant k \leqslant 17$
	$-24 \leqslant l \leqslant 24$	-24 $\leqslant l \leqslant 24$
Reflections collected	22862	22379
Independent reflections [$R_{\text {(int) }}$]	10646 (0.0338)	10400 (0.0886)
Completeness to theta (\%)	99.0	97.9
Absorption correction	None	None
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
Data/restraints/parameters	10646/0/793	10400/0/784
Goodness-of-fit (GOF) indicator	1.013	1.033
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0461, \\ & w R_{2}=0.1109 \end{aligned}$	$\begin{aligned} & R_{1}=0.0857 \\ & w R_{2}=0.1345 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0600, \\ & w R_{2}=0.1174 \end{aligned}$	$\begin{aligned} & R_{1}=0.1715, \\ & w R_{2}=0.1585 \end{aligned}$
Largest difference peak and hole (e \AA^{-3})	0.606 and -0.624	0.349 and -0.490

3.5.2. Crystallographic data for $\mathbf{3 d} \cdot$ toluene and $\mathbf{4 c} \cdot$ benzene See Table 4.

3.6. Computational studies

Calculations were carried out on HPC-P4/GLW and HPC3000XC104T workstations provided by HPC Inc. in Japan. All geometric optimizations were optimized by DFT calculations at the B3LYP/6$31 G^{* *}$ level using Gaussian 03 programs with no symmetry restrictions [11]. The POAV/3D-HMO analyses were performed using the poav3 program [7c].

Acknowledgments

This work was supported by Grant-in Aid for a High-Tech Research Center Project from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors are grateful to the Shin-Etsu Chemical Co. Ltd. and the Asai Germanium Co. Ltd. for providing the chlorosilanes and tetrachlorogermane.

References

[1] (a) Cocrystalization of fullerenes with porphyrins, see: M.M. Olmstead, D.A. Costa, K. Maitra, B.C. Noll, S.L. Phillips, P.M. Van Calcar, A.L. Balch, J. Am. Chem. Soc. 121 (1999) 7090;
(b) P.D.W. Boyd, C.A. Reed, Acc. Chem. Res. 38 (2005) 235;
(c) . Benzenes:M.F. Meidine, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton, J. Chem. Soc., Chem. Commun. (1992) 1534;
(d) A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, J. Chem. Soc., Chem. Commun. (1993) 56;
(e) H.B. Bürgi, R. Restori, D. Schwarzenbach, A.L. Balch, J.W. Lee, B.C. Noll, M.M. Olmstead, Chem. Mater. 6 (1994) 1325;
(f) . Others cited in:D.V. Konarev, R.N. Lyubovskaya, N.V. Drichko, E.I. Yudanova, Y.M. Shul'ga, A.L. Litvinov, V.N. Semkin, B.P. Tarasov, J. Mater. Chem. 10 (2000) 803.
[2] (a) Review of transition metal complexes and supramolecular complexes with fullerenes, see: A.L. Balch, M.M. Olmstead, Chem. Rev. 98 (1998) 2123;
(b) . Ir-complexs involving brnzylether of fullerenes:A.L. Balch, V.J. Catalano, J.W. Lee, M.M. Olmstead, J. Am. Chem. Soc. 114 (1992) 5455;
(c) V.J. Catalano, N. Parodi, Inorg. Chem. 36 (1997) 537;
(d) F. Diederich, M. Gómez-López, Chem. Soc. Rev. 28 (1999) 263;
(e) N. Martín, L. Sánchez, B. Illescas, I. Pérez, Chem. Rev. 98 (1998) 2527 ;
(f) E.C. Constable, Angew. Chem., Int. Ed. 33 (1994) 2269.
[3] (a) S.I. Khan, A.M. Oliver, M.N. Paddon-Row, Y. Rubin, J. Am. Chem. Soc. 115 (1993) 4919;
(b) F. Diederich, U. Jonas, V. Gramlich, A. Hermann, H. Ringsdorf, C. Thilgen, Helv. Chim. Acta 76 (1993) 2445;
(c) P. Seiler, A. Hermann, F. Diederich, Helv. Chim. Acta 78 (1995) 344;
(d) T. Ishida, K. Shinozuka, T. Nogami, S. Sasaki, M. Iyoda, Chem. Lett. 24 (1995) 317;
(e) H. Imgartinger, C.-M. Köhler, G. Baum, D. Fenske, Liebigs Ann. Chem. (1996) 1609;
(f) H. Irngartinger, A. Weber, T. Oeser, Angew. Chem., Int. Ed. 38 (1999) 1279; (g) J. Osterodt, M. Nieger, F. Vögtle, J. Chem. Soc., Chem. Commun. (1994) 1607;
(h) F. Djojo, A. Herzog, I. Lamparth, F. Hampel, A. Hirsch, Chem. Eur. J. 2 (1996) 1537;
(i) H.M. Lee, M.M. Olmstead, E. Iezzi, J.C. Duchamp, H.C. Dorn, A.L. Balch, J. Am. Chem. Soc. 124 (2002) 3494;
(j) E. Iezzi, J.C. Duchamp, K. Harich, T.E. Glass, H.M. Lee, M.M. Olmstead, A.L. Balch, H.C. Dorn, J. Am. Chem. Soc. 124 (2002) 524.
[4] Simulaneously but independently Prof. Akasaka was also able to characterize a [5,6]-azafulleroid and [6,6]-azamethanofullerene by X-ray crystallography using N-tosylsulfilimine with C_{60} : T. Nakahodo, M. Okada, H. Morita, T. Yoshimura, M.O. Ishitsuka, T. Tsuchiya, Y. Maeda, H. Fujihara, T. Akasaka, X. Gao, S. Nagase, Angew. Chem., Int. Ed. 47 (2008) 1298.
[5] (a) M. Prato, Q.C. Li, F. Wudl, V. Lucchini, J. Am. Chem. Soc. 115 (1993) 1148; (b) M. Yan, S.X. Cai, J.F.W. Keana, J. Org. Chem. 59 (1994) 5951;
(c) L.-L. Shiu, K.-M. Chien, T.-Y. Liu, T.-I. Lin, G.-R. Her, S.-L. Huang, T.-Y. Luh, J. Chem. Soc., Perkin Trans. 1 (1994) 3355;
(d) M.R. Banks, J.I.G. Cadogan, I. Gosney, P.K.G. Hodgson, P.R.R. LangridgeSmith, D.W.H. Rankin, J. Chem. Soc., Chem. Commun. (1994) 1365;
(e) M. Takeshita, T. Suzuki, S. Shinkai, J. Chem. Soc., Chem. Commun. (1994) 2587;
(f) M.R. Banks, J.I.G. Cadogan, I. Gosney, P.K.G. Hodgson, P.R.R. LangridgeSmith, J.R.A. Millar, A.T. Taylor, Tetrahedron Lett. 35 (1994) 9067;
(g) T. Ishida, K. Tanaka, T. Nogami, Chem. Lett. (1994) 561;
(h) C.J. Hawker, P.M. Saville, J.W. White, J. Org. Chem. 59 (1994) 3503;
(i) M.R. Banks, J.I.G. Cadogan, I. Gosney, P.K.G. Hodgson, P.R.R. LangridgeSmith, J.R.A. Millar, A.T. Taylor, J. Chem. Soc., Chem. Commun. (1995) 885;
(j) M.R. Banks, J.I.G. Cadogan, I. Gosney, P.K.G. Hodgson, P.R.R. LangridgeSmith, J.R.A. Millar, John A. Parkinson, D.W.H. Rankin, A.T. Taylor, J. Chem. Soc., Chem. Commun. (1995) 887;
(k) L.-L. Shiu, K.-M. Chien, T.-Y. Liu, T.-I. Lin, G.-R. Her, T.-Y. Luh, J. Chem. Soc., Chem. Commun. (1995) 1159;
(1) G.-X. Dong, J.-S. Li, T.-H. Chan, J. Chem. Soc., Chem. Commun. (1995) 1725; (m) G. Schick, T. Grösser, A. Hirsch, J. Chem. Soc., Chem. Commun. (1995) 2289;
(n) T. Grösser, M. Prato, V. Lucchini, A. Hirsch, F. Wudl, Angew. Chem., Int. Ed. 34 (1995) 1343;
(o) N. Wang, J. Li, D. Zhu, T.H. Chan, Tetrahedron Lett. 36 (1995) 431;
(p) A.B. Smith III, H. Tokuyama, Tetrahedron 52 (1996) 5257;
(q) G. Schick, A. Hirsch, H. Mauser, T. Clark, Eur. Chem. J. 2 (1996) 935;
(r) C.K.-F. Shen, K.-M. Chien, C.-G. Juo, G.-R. Her, T.-Y. Luh, J. Org. Chem. 61 (1996) 9242;
(s) B. Nuber, F. Hampel, A. Hirsch, Chem. Commun. (1996) 1799;
(t) A. Ikeda, C. Fukuhara, S. Shinkai, Chem. Lett. 26 (1997) 407;
(u) C. Bellavia-Lund, F. Wudl, J. Am. Chem. Soc. 119 (1997) 943;
(v) A. Ikeda, C. Fukuhara, S. Shinkai, Chem. Lett. 27 (1998) 915;
(w) P.P. Kanakamma, S.-L. Huang, C.-G. Juo, G.-R. Her, T.-Y. Luh, Chem. Eur. J. 4 (1998) 2037;
(x) C.-F. Chen, J.-S. Li, G.-J. Ji, Q.-Y. Zheng, D.-B. Zhu, Synth. Commun. 28 (1998) 3097;
(y) M. Iglesias, B. Gómez-Lor, A. Santos, J. Organomet. Chem. 599 (2000) 8;
(z) A. Ouchi, R. Hatsuda, B.Z.S. Awen, M. Sakurai, R. Ogura, T. Ishii, T. Araki, O.

Ito, J. Am. Chem. Soc. 124 (2002) 13364;
(a') L. Ulmer, J. Mattay, Eur. J. Org. Chem. (2003) 2933;
(b') G.-S. Tang, X.-L. Chen, S.-Y. Zhang, J. Wang, Org. Lett. 6 (2004) 3925;
(c') A. Ouchi, B.Z.S. Awen, H. Luo, Y. Araki, O. Ito, Tetrahedron Lett. 46 (2005) 6713;
(d') S. Minakata, R. Tsuruoka, T. Nagamachi, Mitsuo Komatsu, Chem. Commun. (2008) 323.
[6] (a) X-ray structures of fulleroid and bisfulleroid: A.F. Kiely, R.C. Haddon, M.S. Meier, J.P. Selegue, C.P. Brock, B.O. Patrick, G.-W. Wang, Y. Chen, J. Am. Chem. Soc. 121 (1999) 7971;
(b) Y. Murata, M. Murata, K. Komatsu, Chem. Eur. J. 9 (2003) 1600.
[7] (a) POAV/3D-HMO analyses: R.C. Haddon, Acc. Chem. Res. 21 (1988) 243;
(b) R.C. Haddon, Science 261 (1993) 1545;
(c) R.C. Haddon, K. Raghavachari, Tetrahedron 52 (1996) 5207. POAV3 program is available from QCPE.
[8] G.M. Sheldrick, Program for the Solution of Crystal Structures, University of Göttingen, Germany.
[9] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst. 38 (2005) 381.
[10] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837.
[11] gaussian 03 (Revision C.02): M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkar, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, gaussian, Inc., Wallingford CT, 2004.
[12] One of reviewers recommended a carbon analog ($\mathrm{E}=\mathrm{C}$ in Scheme 1) as comparison with silyl and germylphenyl groups. However, the corresponding $\mathrm{Ph}_{3} \mathrm{CCH}_{2} \mathrm{~N}_{3}$ is unknown compound. The reaction of triphenylmethyl derivatives such as $\mathrm{Ph}_{3} \mathrm{CCH}_{2} \mathrm{X}$ ($\mathrm{X}=$ halogen, MgX , etc.) as starting compound seems to undergo an appreciable amount of a phenyl migration to afford $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Cl}) \mathrm{Ph}$ or $\mathrm{Ph}_{2} \mathrm{CXCHPh}$ [J.C. Charlton, I. Dostrovsky, E.D. Hughes, Nature 167 (1951) 986; E.Grovenstein, A.B. Cottingham, L.T. Gelbaum, J. Org. Chem. 43 (1978) 3332]. So in the synthetic point of view, triphenylsilyl or germyl groups are more easily accessible.

[^0]: * Corresponding author. Tel./fax: +81 0463594111.

 E-mail address: kabe@kanagawa-u.ac.jp (Y. Kabe).

